SYNTHESIS OF MACROMOLECULAR PRODRUG OF 5-FLUOROURACIL

Neung Ju Lee

Department of Premedical Sciences
Kosin Medical College, Pusan 602-030, Korea

INTRODUCTION

In recent years the use of the synthetic polymers as polymeric drug delivery systems has received increasing attention. Several symposia being organized to discuss the current state-in-art of research into polymeric drugs, controlled release of bioactive materials, applications of immobilized enzymes and proteins, and the general biomedical applications of polymers. The term “Polymeric drug” includes both polymers that contain a drug or chemotherapeutic unit as part of polymer backbone and polymers which include the active units as pendant groups or as a terminal group on the polymer chain. In the latter categories the designation “Polymeric drug carrier” is more appropriate as the polymeric constituent serves simply as a drug carrier and is usually chosen because of its biological inactivity.

Since the general idea of polymeric drugs was proposed by Kingsdorf, research on the design and preparation of them has become very active. Some of the synthetic analogs of nucleic acids have already been found to have pharmaceutical activity. Further, since some of the nucleic acid base derivatives such as 5-fluorouracil and mercaptopurine are highly pharmaceutically active, polymers...
having such nucleic acid base derivatives have also become important as polymeric drugs. The results of the present study suggest that N-acyl oximationylation is a potentially useful approach to obtain prodrugs of 5-fluorouracil. The usefulness of this approach which in the past has also been applied to various other NH-acidic drugs stems from the fact that by varying the acyl portion of the derivatives it is possible to control the rate of regeneration of drug. Some 1-acetyl oxyxymethyl derivatives of 5-fluorouracil have recently been shown to possess strong antitumor activity in mice. In view of the present results this activity may certainly be due to 5-fluorouracil formed upon enzymatic hydrolysis in vivo. The present study deals with the synthesis of 1-(methacyroyloxymethyl)-5-fluorouracil similar to 1-acetoxyxymethyl-5-fluorouracil and its polymer.

EXPERIMENTAL

Materials

5-Fluorouracil, aldehyde, paraformaldehyde, methanol, ethyl acetate, petroleum ether, acetic anhydride, sodium sulfate, benzene, ethanol, propionyl chloride, and methacrylic anhydride were purchased from Fluka AG, Switzerland and were used as received. Methylmethacrylate was washed twice with aq. 5% NaOH (to remove inhibitor such as hydroquinone) and twice with water, dried with MgSO₄, and distilled from CaH₂ under nitrogen at reduced pressure. The distillate was stored at low temperature and redistilled before use.

Instruments

H-NMR spectra were run on a Varian 360A instrument using tetramethylsilane as zero reference. Ultraviolet spectral measurements were performed with a Shimadzu 200A spectrophotometer equipped with a thermostatically controlled cell compartment, using 1cm quartz cells. Infrared spectra were recorded on a Perkin Elmer 1330 spectrophotometer.

Synthesis of Monomer

1,3-Bis(acetoxyxymethyl)-5-fluorouracil

5-Fluorouracil (1.3g, 0.01mol) was dissolved in 4ml of a 37% aqueous solution of formaldehyde with pH being adjusted to 70 with sodium hydroxide. After 5h at room temperature the solution was lyophilized to give an oily residue to 1,3-dihydroxyxymethyl-5-fluorouracil. This was subsequently dissolved in 10ml of dry pyridine and 3ml (0.03 mole) of acetic anhydride was added while stirring. After standing at room temperature for 2h the reaction solution was added to 100ml of the water. The mixture was extracted twice with ether and the extracts were washed with diluted hydrochloric acid and water. The ether phase was dried over anhydrous sodium sulfate and evaporated in vacuum to give the title compound. It was recrystallized from ether-petroleum ether, yielding 0.62g, mp 105-106°C. (Lit: mp 105°C)

3-Acetoxyxymethyl-5-fluorouracil

3-Acetoxyxymethyl-5-fluorouracil was prepared by alkaline hydrolysis of 1,3-bis (acetoxyxymethyl)-5-fluorouracil (1.0g) was dissolved in a mixture of 35ml of methanol and 35ml at which time the title compound was formed in maximum yield. Hydrochloric acid (2M) was added to give a pH of 6 and the reaction solution was concentrated in vacuum,
dried over anhydrous sodium sulfate, and evaporated in vacuum. After column chromatography (silica gel, eluents toluene containing 1% of acetic acid with increasing amount of ethyl acetate) of the residue pure compound was isolated and recrystallized from ethyl acetate-petroleum ether yield 0.23g mp 158-
159°C(Lit mp 158°C)

Chloromethyl propionate

To a chloroform solution of propionyl chloride in an ice bath was added one equivalent of paraformaldehyde and catalytic amount of anhydrous zinc chloride. The mixture was stirred in the ice bath for several hours and then allowed to room temperature. The cloudy solution that resulted was diluted with an equal volume of petroleum ether and filtered. The filtrate was concentrated at room temperature on a rotary evaporator. The concentrate that resulted was fractionally distilled to give propionyl chloride. The product structure was confirmed by H-NMR and IR spectrum.

H-NMR δ 5.72(CO-CH-Cl), 2.39(H-C-C=0), IR 1740 cm⁻¹(C=0 stretching), 1260 cm⁻¹(C-Cl stretching).

1-Proponyloxymethyl-5-flourouracil (POMFU)

5-Fu (6.50g 0.05 mol) was dissolved in 50ml of dimethylacetamide, then triethylamine (15.18g, 0.15mol) was added to the solution. The mixture was treated dropwise with chloromethyl propionate (8.00g, 0.065mol) over 30min. The reaction mixture was stirred for 2hr, allowed to stand overnight and then filtered to remove the precipitated triethylamine hydrochloride. Then, dimethylacetamide was distilled from the filtrate and the residue was applied to a column packed with silica gel. Elution with mixtures (8 to 8.1 in mixing ratio) of benzene and ethyl acetate gave POMFU. The product was further recrystallized from benzene to afford pure 1-proponyloxymethyl-5-flourouracil (7.93g, 73.1%).

mp 105-106°C. The product structure was confirmed by H-NMR and IR spectrum. IR (KBr) 3430 cm⁻¹(NH stretching), 1720 cm⁻¹ (C=0 stretching), 1020 cm⁻¹(C=0 stretching), 1120 cm⁻¹(C-F stretching). NMR(DMSO-
δ 1.2(t, CH₃), 4.2(1 COCH₂), 4.5(t, N-CH₂), 8.1(d, C-H) Fig 1(IR spectrum). Fig 2 (NMR spectrum).

1-Hydroxymethyl-5-flourouracil (HMFU)

100ml of methanol and 12ml of 6N HCl were added to 2.16g of 1-proponyloxymethyl-5-flourouracil (10 mmol). After additional refluxing for 3hr, the methanol was distilled off under vacuum to provide a crystalline product. Recrystallization from ethanol gave 1.12g (70%) of the product. mp 141-142°C.
The product structure was confirmed by H-NMR and IR spectrum. IR 3520-3250 cm⁻¹ (OH stretching), 1820 cm⁻¹(C=H stretching). 1025 cm⁻¹(C=0 stretching), NMR δ 1.7(=C-H), 4.7(N-CH₂), 3.5(O-H). Fig 3(IR spectrum).

1-(2'-Methacryloyloxymethyl)-5-
Flourouracil (MAOFU)

Methacrylic anhydride (1.54g, 0.01 mole) and sulfur as polymerization inhibitor were added to HMFU (1.60g, 0.01 mole) and stirred for 3hr at 90-100°C to give a clear solution. The reaction mixture was cooled to 0°C to precipitate the product. The product was filtered and washed thoroughly with diethyl ether and recrystallized from ethanol. Yield 1.19g (52.2%) mp 132-133°C. The product structure was confirmed by H-NMR and IR spectrum.

IR 3040 cm⁻¹(=CH stretching), 1745 cm⁻¹(=
C=0 stretching), 1660cm⁻¹ (C=C stretching) 1022cm⁻¹ (C–O stretching), 1120cm⁻¹ (C–F stretching)
NMR(DMSO-d₆), 819 (–CH₃), 4.8 (N-CH₂), 5.7 (CH₂, d), 8.5 (–C=H) Fig 5(IR spectrum), Fig 6(NMR spectrum)

Homopolymerization

Monomer MAOFU(0.01M/1) was dissolved in cyclohexanone and AIBN(4.9x10⁻⁴/1) was added. The solution was placed in a polymerization tube and degassed under vacuum. The polymerization was conducted at 60°C for 24h. The solution was poured into excess n-hexane with stirring and the precipitated product was filtered. The product was dried under at room temperature.

Copolymerization of MAOFU and MMA

MAOFU(0.01 M/1), AIBN(4.9x10⁻⁴/7/1) and dry cyclohexanone were charged into a polymerization tube. The solution was degassed with three freeze-thaw cycles. The tube was then sealed and heated at 60°C for 48h. The solution was poured into excess n-hexane with vigorous stirring. The precipitate was filtered, dried in vacuum at room temperature for 48h, and weighed. Fig 7

Analysis of copolymers

Poly(MAOFU), poly(MMA), and poly(MAOFU-co-MMA) were dissolved in tetrahydrofuran. The copolymer composition was determined from UV spectrum at 267.3nm

Hydrolysis of MAOFU and homo(MAOFU)

The rates of formation of hydroxymethyl-5-fluorouracil were studied under pseudo-first order conditions, using ethanol-water (1:1) mixture. The solution was kept in water bath at 37°C

RESULT and DISCUSSION

Determination of monomer reactivity ratios

When two monomers such as M₁ and M₂ copolymerize, there are two kinds of free radicals which form the growing ends of the polymer molecules. Each kind of radical may react with either kind of monomer molecule

\[
\begin{align*}
M₁ + M₁ & \rightarrow \ \text{M₁ (1)} \\
M₁ + M₂ & \rightarrow \ \text{M₁ (2)} \\
M₂ + M₂ & \rightarrow \ \text{M₂ (3)} \\
M₂ + M₁ & \rightarrow \ \text{M₁ (4)}
\end{align*}
\]

A kinetic analysis of copolymerization behavior results in the copolymer composition equation

\[
\begin{aligned}
\frac{d[M₁]}{d[M₂]} &= \frac{[M₁]}{[M₂]} \frac{r₁[M₁] + [M₂]}{r₂[M₁] + [M₂]} \quad \text{(5)}
\end{aligned}
\]

where the reactivity ratios are defined as:

\[
\begin{align*}
r₁ &= \frac{K_{11}}{K_{12}}, \quad r₂ = \frac{K_{21}}{K_{22}}
\end{align*}
\]

where the reactivity ratios are defined as [M₁] and [M₂] are the mole composition of the monomer feed, and d[M₁] and d[M₂] the mole composition of the copolymer formed instantaneously. [M₁] will be used to represent MAOFU and [M₂] will be MMA.

Various methods have been proposed to obtain the “best” r₁ and r₂ pair

(1) According to the Fineman and Ross method⁴, equation (5) is rewritten as

\[
\frac{X(Y-1)}{Y} = r₁ \frac{X^*}{Y} - r₂
\]

where \(X = \frac{[M₁]}{[M₂]} \) and \(Y = \frac{m₁}{m₂} \)

A plot of \(X^* / Y \) gives a straight line whose slope is r₁ and intercept r₂
(2) For the Mayo and Lewis method (or the intersection method\(^6\)), equation (5) is rewritten

\[
r_2 = \frac{[M_1]}{[M_2]} \left[\frac{m_2}{m_1} \left(1 + \frac{[M_1]}{[M_2]} r_1 \right) - 1 \right] = ar_1 + b
\]

where a and b are parameters computable from \([M_1], [M_2], m_1\) and \(m_2\). Plotting \(r_2\) versus \(r_1\) produces a straight line. Each experiment produces a straight line, the intersection of which provides \(r_1\) and \(r_2\).

(3) Kelen and Tudós\(^1\) showed that the disadvantage of the Fineman and Ross method can be abolished by using the following graphically evaluable linear equation

\[
\frac{G}{a+F} = \frac{r_1 + r_2}{a} \frac{F}{a+F} - \frac{r_2}{a} \quad \ldots \quad \ldots \quad (6)
\]

where \(a\) is an arbitrary positive constant.

By introducing

\[
\eta = \frac{G}{a+F} \quad \text{and} \quad \xi = \frac{F}{a+F} \quad \ldots \quad \ldots \quad (7)
\]

equation (6) can be written

\[
\eta = \left(\frac{r_1 + r_2}{a} \right) \xi - \frac{r_2}{a} \quad (0 < \xi < 1)
\]

Plotting against a straight line is obtained which on extrapolation to \(\xi = 0\) and \(\xi = 1\) gives \(-r_2/a\) and \(r_1\) (as intercepts), respectively. The experimental data can be distributed symmetrically along the line when \(a\) is obtained by \(a = \sqrt{Fm \cdot Fn}\). where \(Fm\) and \(F_M\) are the lowest and highest \(F\) values, respectively. To determine \(r_1\) and \(r_2\) values, the data from Table 1 was used to draw Kelen-Tudós plot.

From the extinction coefficient (\(E*\)) of the copolymer samples at 267.3nm, the weight fraction of poly(MAOFU), \(x\), could then be calculated from the following equation \(E* = 0.0385 + 1.16x \cdot \cdot \cdot (8)\)

\[
d[M_1]/d[M_2]\text{in equation}(5)\text{correspond to}\ x\ \text{in equation}(8)\ \text{The reactivity ratios for the}\ \text{copolymerization of MAOFU}(r_1)\ \text{and MMA} (r_2)\text{are 0.27 and 1.54 respectively. This}\ \text{shows that MMA radicals are more stable than MAOFU radical and that this reactivity is due to steric hindrance offered by pendant group of MAOFU.}

Hydrolysis of MAOFU and poly (MAOFU)

All rate studies were carried out at 37°C. The reactions were generally followed by direct UV-spectrophotometry by recording the absorbance changes accompanying the hydrolysis at 270nm where the absorption of MAOFU and hydroxymethyl differed maximally. Pseudo-first-order rate constant was calculated from the slopes of linear plots of log(A∞ − At) / t against time where A∞ and At are the absorbance readings at infinity and time, t, respectively. K for MAOFU is 6.42x10⁻³/sec K for poly(MAOFU) is 7.4x10⁻¹/sec.

Table 1. Determination of monomer reactivity ratios for the copolymerization of MAOFU and MMA

<table>
<thead>
<tr>
<th>Exp No.</th>
<th>X = M₁/M₂</th>
<th>Y = m₁/m₂</th>
<th>X²</th>
<th>Y − 1</th>
<th>F = X² / Y</th>
<th>G = X(Y-1) / Y</th>
<th>a + F</th>
<th>7 = G / a + F</th>
<th>(\xi = F / a + F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.47</td>
<td>0.27</td>
<td>0.22</td>
<td>−0.73</td>
<td>0.1</td>
<td>−1.27</td>
<td>2.79</td>
<td>−0.46</td>
<td>0.29</td>
</tr>
<tr>
<td>2</td>
<td>0.71</td>
<td>0.37</td>
<td>0.50</td>
<td>−0.63</td>
<td>1.38</td>
<td>−1.11</td>
<td>3.36</td>
<td>−0.33</td>
<td>0.41</td>
</tr>
<tr>
<td>3</td>
<td>1.0</td>
<td>0.46</td>
<td>1.0</td>
<td>−0.54</td>
<td>2.17</td>
<td>−1.17</td>
<td>4.15</td>
<td>−0.28</td>
<td>0.52</td>
</tr>
<tr>
<td>4</td>
<td>1.50</td>
<td>0.71</td>
<td>2.25</td>
<td>−0.29</td>
<td>3.17</td>
<td>−0.64</td>
<td>5.15</td>
<td>−0.12</td>
<td>0.62</td>
</tr>
<tr>
<td>5</td>
<td>2.15</td>
<td>0.94</td>
<td>4.54</td>
<td>−0.06</td>
<td>4.83</td>
<td>−0.14</td>
<td>6.81</td>
<td>−0.02</td>
<td>0.71</td>
</tr>
</tbody>
</table>
CONCLUSION

MAOFU was synthesized by reaction of 1-(hydroxymethyl)-5-fluorouracil with methacrylic anhydride. First, the polymerization of MAOFU and copolymerization of MAOFU with MMA were carried out in cyclohexane at 60°C, using AIBN as an initiator. The specific absorptivity of poly(MAOFU-co-MMA) was measured by UV spectrophotometric means at 267.3 nm in THF. The calibration curve was obtained changing concentration ratios of both homopolymers and the following equation was derived

\[k = 0.0385 + 1.16x \]

The monomer reactivity ratios, \(r_1 \) and \(r_2 \) were determined by Kelen-Tudós method. MAOFU(M1)-MMA(M2) \(r_1 = 0.269 \) and \(r_2 = 1.54 \).

REFERENCE

5. Gebelein CG, Glowacky R: Chemotherapeutic polymer The synthesis of some potentially polymerizable derivatives of 6-mercaptopurine Polymer preprints. 18 (1) : 806, 1977

15. Mayo FR. Lews FM: A basis for com-
paring the behavior of monomers in copolymerization J Am Chem Soc 66 : 1594, 1944
Fig. 1. IR spectrum of POMFU (Solid Phase, KBr)

Fig. 2. NMR spectrum of POMFU (Solid Phase, KBr)

Fig. 4. NMR spectrum of HMFU (DMSO-d6)

Fig. 3. IR spectrum of HMFU (Solid Phase, KBr)
Fig. 5. IR spectrum of MAOFU (Solid Phase, KBr)

Fig. 6. NMR spectrum of MAOFU (DMSO-d6)

Fig. 7. IR spectrum of poly (MAOFU-co-MMA) (Solid Phase, KBr)

Fig. 8. Kelen-Tudos plot for the copolymerization of MAOFU and MMA at 60°C