Severe Hypoxemia following Methylmethacrylate Bone Cement during Total Elbow Replacement

Tae Ho Chang, MD., Doo sik Kim, MD., Sie Jeong Ryu, MD., Kyung Han Kim, MD. and Se Hwan Kim, MD.

Department of Anesthesiology and Pain Medicine, Kosin University College of Medicine, Busan, Korea

Abstract

We report a case of severe hypoxemia following application of methylmethacrylate bone cement during total elbow replacement arthroplasty in patient with rheumatoid arthritis. Bone cement implantation syndrome (BCIS) is characterized by hypotension, hypoxemia, cardiac arrhythmia, cardiac arrest, or any combination of these complication. To prevent these adverse effects, it is necessary that the anesthetist should prepare the central venous pressure line, esophageal stethoscope or doppler ultrasonic transducer, and check the end-tidal CO₂, arterial oxygen saturation, blood gas analysis and adequate fluid volume during anesthesia.

Key words : hypoxemia, methylmethacrylate bone cement, total elbow replacement

서 론

Bone cement이식 후유군(Bone Cement Implantation Syndrome, BCIS)은 bone cement의 사용과 관계되어 수술 중 저혈압, 저산소혈중, 부정맥 및 심장이 동반될 수 있으며, 이런 부분이 동반되어 나타나는 것으로, 그 원인은 골수강 내압이 상승하거나 골수 조직 또는 지방의 혈관내 혈중에 의한 색전증과 methylmethacrylate bone cement의 독성에 의한 혈관의 이완작용과 심신 수축력의 약세와 동으로 생각되 고 있다. 이러한 bone cement의 사용은 1961년 Charnley에 의해 처음으로 소개된 이후 인공관절의 고정을 위해 널리 사용되고 있으며 BCIS의 발생빈도는 0.02 - 6.6%로 알려져 있다. 본 연구는 전신마취 하에 팽양치관절 전치환술 시 methylmethacrylate bone cement을 사용한 후 심한 저산소혈증을 경험하였기에 문헌적 고찰과 함께 보고하는 바이다.

증례

체중 65 kg, 신장 158 cm인 51세 여자 환자로 21년 전부터 다발성 류마티스 관절염으로 진단을 받았고, 1년 전부터 팽양치관절에 발생한 심한 통증과 운동장애로 우측 팽양치 관절에 전치환(total elbow replacement) 계획 수술을 받아 입원하였다. 환
자사는 과거력 상 12년 전 암초, 우측 손목, 좌측 손가락에 고통을 받았다. 그 후 prednisolone (deltacortef® 5mg), koprofen (ketoproplaster®), methotrexate 등으로 치료를 받아 왔다. 일반 혈액검사와 생화학 검사에서 혈색소 10.8 g/dl, 혈소판수가 310,000 /μl, RA 검사(RF test) 156 IU/ml로 정상범위였다. 흉부 X-선 검사에서 고혈압 심장소견을 보였으며, 수술 받기 전 입원하였을 때 혈압이 160/110 - 170/100 mmHg, 심박수는 72회/분으로 captopril과 hydralazine 등으로 전처치하였다.

마취 유도 한 시간 전에 마취전액제로 midazolam 2.5mg과 ranitidine (uranac®) 25mg을 근주하였다. 수술실에 도착 후 혈압은 140/95 mmHg, 심박수는 98회/분이었고 백탁 산소포화도(SpO₂)는 98% 이었다. 마취 유도는 glycopyrrolate 0.2mg를 정주하고 1분 후 propofol 120mg, rocuronium 50mg을 정주한 후 적절하게 근이완이 된 것을 확인하고 기관내 삼관을 시행하였다. 산소 1.5 L/min와 아산화질소 1.5 L/min, enfurane (1-2%)으로 기계적 조정호흡으로 유지하였다. 그 후 근이완은 vecuronium으로 간접적으로 유지하였다. 수술은 마취 시작 후 55분이 지나서 시작하였다. 혈압은 130/80 mmHg, 심박사는 80-90회/분으로 유지되었다. 수술 시작 후 맥박산소포화도가 97% - 98%로 약간 감소를 보여 산소를 60%로 두여하면서 동맥혈 가스분석을 한 결과 pH-PaCO₂-PaCO₂-HCO₃⁻base excess는 각각 7.42, 114 mmHg, 37 mmHg, 24 mmol/L, -0.2였으며, Hct는 34%였다. 수술을 시작하고 1시간 30분이 경과한 후 bone cement를 적절한 골수강 내로 넣고 약 5분 뒤 자동합감계로 측정한 혈 암이 110/75 mmHg, 습박수가 105회/분으로 혈압이 약간 감소를 보여서 SpO₂가 감자가 98%에서 85%로 떨어지지 않았다. 우선 산소농도를 100%로 바꾸고 맥박산소계측기의 센서를 다른 손가락으로 옮겨 측정하였으나 여전히 85% 정도로 지속되었다. 혈압을 제 측정한 결과 128/75 mmHg, 심 박수가 85회/분으로 변화는 없었으나 청색증을 관찰할 수 있었다. 수술은 중지시키고 저혈압을 봐 상태에서 시행한 동맥혈 가스분석 결과 pH-PaCO₂-PaCO₂-HCO₃⁻base excess는 각각 7.26, 51 mmHg, 48 mmHg, 21.5 mmol/L, -4.8이었고, SpO₂는 79%, Hct는 34% 이었다. 100% 산소를 투여하면서 고통을 없어 측정한 상악 방향 혈압은 편평도 동일하고 정상이었다. Methyprednisolone (methylsol®) 50 mg 정주하였고, 계 속 100% 산소를 투여한 지 약 5분이 경과한 후 SpO₂가 90%에서 서서히 95%까지 증가하였으며 동맥 혈 가스분석 결과 pH-PaCO₂-PaCO₂-HCO₃⁻base excess는 각각 7.28, 92 mmHg, 40 mmHg, 18.8 mmol/L, -6.6이었다. 이때 sodium bicarbonate 2 ampul과 CaCl₂ 1/2 ampule을 정주하였다. 약 30분 후 다시 수술을 시작하였으며 혈압은 139/75 mmHg, 심박수는 85회/분으로 유지되었다. 다시 bone cement를 투여한 골수강 내로 넣은 후 혈압은 117/75 mmHg였으며 심박수나 SpO₂의 큰 변화는 없었다. 산소는 75%로 투여하다가 수술종료 시에는 50%로 주어졌고, 술 중 산소포화도는 96%-100%로 유지되었다. 수술 종료 후 pyridostigmine과 neostigmine에 각각 atropine, glycopyrrrolate을 섞어 정주하고 충분히 자발호흡을 회복한 후 발관하고 회복실로 옮겨졌다. 종 수술시간은 4시간 25분, 마취시간은 5시간 40분이었다. 회복실에서 산소마스크로 산소 5 L/min을 투여한 후 혈압은 120/90 mmHg, 심 박수는 90회/분, 호흡수는 20회/분이었고, SpO₂는 97%로 유지되었다. 회복실에서 30분 경과 후 대기로 호흡하여도 SpO₂가 94%로 유지하는 것을 확인하고 현자를 빌실로 보냈다. 술 후 2시간에 SpO₂는 92.7%로었고, 자가통증조절(PCA-IV) 중이었으나 통증을 호소하여 tramadol을 1시간 간격으로 두 번 정주하였다. 그 후 병든 후유증 없이 14일 후에 퇴원하였다.

고찰

Bone cements를 이용한 관절 정형수술 시에는 급성 저혈압이나 자산소증, 심부정맥, 심장정지 병증이 나타날 수 있는데 이를 bone cement 이식증후군(bone cement implantation syndrome, BCIS)이라 하며, 환자 의 0.6-1%에서는 사망에 이르기까지 한다. 일반적으로 BCIS 발생빈도는 1997년 보고에서 long stem 고관절 전 치환술시 1.75%, metaphysis에 한한 고관절 전치환술시 0.1%라 하였지만 1980년 발표에서...
BICS의 발생원인으로 몇 가지를 들 수 있다. Methylmethacrylate 단재체(monomer) 독성에 의한 것과 지방 또는 공기, 독상에 의한 색전증, 절구와 대퇴를 넣을 때 조직 thromboplastin분비에 의한 것 등으로 생각하고 있다. 혼히 사용되는 acrylic bone cement는 methylmethacrylate이고 콘베어에서 산화되어 결국에는 pyruvate로 전환되는데 완전히 대사되면서 대사 산물이 소변에서 검출되지 않으므로 methylmethacrylate 독성이라고 예측하기는 어렵다. 그러나 acrylic bone cement 사용 시에는 약 3-4% methylmethacrylate의 단재체가 전적으로 흡수되어 전신 혈관저항을 감소시키고 심장박동량(cardiac venous filling) 압력을 동시에 감소시켜 저혈압이 발생하는 것으로 추측하고 있다. 최근에는 직접적인 심장세계작용도 있는 것으로 밝혀졌다. 조직 thromboplastin분비는 혈관 응집을 촉진시키고 이는 폐에 가서 미세 색전을 형성하게 된다. 특히 현액과 영역에서 사용되는 bone cement 기법은 폐와 인공 관절을 사이에 절여넣어 폐의 수명을 최대한 늦어지게 사용되지만 이 때 골수강내 압력을 증가시킨다. 정상적인 골수강내압은 10-120 mmHg이나 bone cement의 골수강내 주입 시 발생할 수 있는 폐혈증으로 골수강내압이 500 mmHg 이상 증가할 수 있다고 보고되어 있다. 이러한 골수강내압의 상승은 공기, 지방, 골수조직 및 bone cement 등에 퇴행작용이 유입시켜 심장이나 폐의 색전증을 유발하게 된다. 

폐색전증은 정식소심장 초음파 (transoesophageal echocardiography, TEE)검사에서 "눈보라(snow flurry) 현상이라고 하는 특징적인 이미지를 보이며 이에 의하여 흉부 X선에서 흉내와 혈액 심혈관검사 소견에서 정상형성, 호산구성 미세결정형 물질(anamorphs, eosinophilic fine granular material)을 볼 수 있는데 이는 bone dust라고 하 는 골의 미세한 입자가 된다. 이와 같은 골수강 조직 파편의 섬유는 BCIS로 발견하는데 중요한 역할을 한다. 계획적 전고관절 성형수술에서 TEE와 침습적 혈액학적 감시장치를 사용하여 조사한 결과 섬유는 bone cement를 사용하지 않는 수술보다 사용하는 수술 시 더욱 잘 일 어났고, 심박주파수는 감소하고, 폐동맥압과 혈관저항의 증가를 보였다고 하였다. 지방색전은 폐 실질에 독성이 있는 유리 지방산을 생성하고 페포-모세혈관벽을 통해 배출하고, endogenous cannabinoid 를 사용할 수 있는 BCIS의 저혈 럭개체로도 작용하는것이다. 이와 같이 지방색전을 포함한 혈관 색전증 현상은 cement를 사용한 안와의 간에 일상적으로 경험한 상태로 보고되고 있으며, 혈관내로 정확히 어느 정도의 양이 들어가지 지방색전을 일으키는지는 알려져 있지 않는다. 그러나 Fallon 등에는 bone cement 사용하는 동안 발생하는 혈액학적 불안정은 methylmethacrylate 단재체의 독성보다 지방색전에 의한 것이 많다고 하였으며, 기저성 혼란증과 제2형 당뇨병이 유방암으로 사망하는 78세 여자환자 가 병리학적 측두부하골절(pathologic left subcapital fracture)로 전신 관절성형술을 받는 중 저산소혈증과 저혈압, 심장기능이 약한 24시간 후 사망하여 부정상 지방색전이 사인으로 판명되었다고 보고한 바 있다. 이는 기저질환이 없는 환자에서는 전신 혈액학적 변화 없이 부정상 색전현상을 보일 수 있으나 혈관내혈증과 혈관 질환성이 있는 환자에서는 색전증이 일어나지 않는다면 현상이라 할 수 있다. 특히 저혈액량이나 고혈압 등 기존의 심장질환이 있는 환자, 액체 상태로 methylmethacrylate를 주입하거나 cement 표면에 liquid 단재체가 남아 있는 경우에 골수강내 압력이 증가하여 이로 인해 이차적으로 발생한 색전이 심방출혈이나 혈 암등에 더 치명적인 영향을 줄 수 있다. 골수강내 지방이 방출되면 골내 저항에서 감소하여 하대혈액 초음파상에서 무수한 작은 입자를 전색을 볼 수 있다. TEE로 이 런 색전이 심장 내에서 관찰되며 non cement에 비해 cement로 수술받은 예에서 더 많이 발견된다. 그러나 색전 score는 심혈관관계 증상과 관련이 없기 때문에 병의 심각성의 평가는 되지 않는다. Dambrosio 등은 고관 절과 습관절 성형술 시 TEE로 조사하여 색전 증거를 관찰하였으나 전신 또는 심실의 혈액학적 이상은 없었다고 보고한 바 있다. 또한 출혈 중 발생하는 지방색전증은 bone cement뿐만 아니라 rod, reamers, implant, ultrasonic tool 등 골수강내압을 증가시키는 것은 모두
BCIS의 원인이 될 수 있고, 가는 압력 정도와 기간이 색전수화장 상관관계가 있으며 골 혈관의 기형 역시 색전 위험률을 증가시킨다.

이런 BCIS는 예방하기 위해서는 골수내강 관리 혈관 치료, 고압관의 관리, 혈관내압의 상승을 최소화 하거나 bone cement 주입 전에 골수강 내열을 체계화하여 고압관으로서 골수조직이나 혈관의 색전을 최소화할 수 있다. 이 때문에 이러한 색전의 위험이 있는 골수강 내 debries를 제거하기 위해 고압 관절세척(jet lavage)을 시행한 5) 본 예에서도 고압 관절세척을 시행한 후 cement를 주입하였다. Eichert 등23)은 양을 이용한 실험에서 색전을 하지 않은 경우와 250 ml로 고압 관절세척을 한 후 cement를 삽입했을 때에 비해 정형의 혈류 채널 주요 구성요소는 bone cement 주입 전에 transprosthetic drainage system(TDS)을 이용하면 골수강 내 압력을 낮춘다고 보고한 바 있으며, Schmidt 등24)도 노인이나 흙나공증이 있는 고위험군의 환자에서 고관절 경형수술 시 bone cement 사용 전에 transprosthetic drainage system(TDS)을 이용하면 골수강 내 압력을 낮춘다고 보고한 바 있다.

본 증례는 bone cement 사용 5분 후부터 혈압과 맥박 산소포화도가 떨어지기 시작하여 수술을 중지하고 100% 산소를 투여하면, 혈압은 곧 증가하였으나 맥박 산소포화도는 5분 뒤부터 증가하였다. 당시 색전을 확 인하기 위한 경도도 초음파 및 검사하지 않았으나 정형

성 예후는, 그의 특이한 증상 없이 회복된 것으로 보아 색전증에 의한 것이라기보다는 methylmethacrylate 단량체의 독성에 의한 것으로 추측된다.

결 론

Bone cement 사용 시에는 혈압과 심박수, 호기말 탄 산가스 분압, 맥박 산소포화도, 동맥혈 가스분석을 측 심하고 정기적으로 감시하는 것이 필수적이라 보며,25) 저 산소혈증과 혈압증이나 심형관 허탈의 발생에 대비하 여 산소 투입농도를 적어도 bone cement 주입 5분 전부 터 증가시키고 산소포화도가 감소하면 100% 산소를 지속적으로 투여하는 것이 바람직하다고 하겠다. 또한 심

박출량의 감소는 중요기관의 관류에 직접적인 영향을 주는 만큼 가급적 정동량 상체를 미리 예방하여야 하며,

수액 또는 수혈로 순환혈액량의 보충, 혈암상승제를 준 비하여 심장이 조례되면서 즉시 소생술을 시행할 수 있 도록 미리 대비하는 것도 중요하다고 하겠다.

참고문헌


